# Infrared Spectroscopic and Gravimetric Studies on the Dicyclohexylaminecadmium(II) Tetracyanopalladate(II) Host-Aromatic Guest Systems 

GÜNEŞ S. KÜRKÇÜǦLU ${ }^{1}$, ZİYA KANTARCI ${ }^{2, *}$, RESMİGÜL COŞKUN ${ }^{2}$, and MUSTAFA ŞENYEL ${ }^{3}$<br>${ }^{1}$ Osmangazi Üniversitesi, Fen Edebiyat Fakültesi, Fizik Bölümü, Meşelik Kampüsü, TR26480, Eskişehir, Turkey; ${ }^{2}$ Gazi Üniversitesi, Fen Edebiyat Fakültesi, Fizik Bölümü, Teknikokullar, TR06500, Ankara, Turkey; ${ }^{3}$ Anadolu Üniversitesi, Fen Fakültesi, Fizik Bölümü, Yunusemre Kampüsü, TR26470, Eskişehir, Turkey

(Received: 28 March 2002, in final form: 25 September 2002)

Key words: benzene derivatives, clathrates, cyclohexylamine, inclusion compounds, infrared spectra, metal complexes, tetracyanopalladate


#### Abstract

The host complex $\mathrm{Cd}(\text { Cyclohexylamine })_{2} \mathrm{Pd}(\mathrm{CN})_{4}$ has been prepared in powder form. The spectral data suggest that the structure of this complex is similar to those of the Hofmann-dma-type hosts. The sorption processes of the aromatic guests (benzene, toluene, $o$-, $m$-, $p$-xylene, naphthalene, 1,2-, 1,3-, 1,4-dichlorobenzene and 1,4-dibromobenzene) in this host have been examined at room temperature by gravimetric and spectroscopic measurements. The desorption of the benzene guest against time has been measured. The host structure changes on inclusion of the guests and recovers after liberations. The host complex has been suggested as sorbents for selective absorption.


## Introduction

Hofmann-type host complexes are formulated as $\mathrm{ML}_{2} \mathrm{M}^{\prime}(\mathrm{CN})_{4}\left(\mathrm{M}=\mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn}\right.$ or $\mathrm{Cd} ; \mathrm{M}^{\prime}$ $=\mathrm{Ni}, \mathrm{Pd}$ or Pt ; L=unidentate ligand). The structure of these hosts (Figure 1) consists of two dimensional polymeric layers formed from $\mathrm{ML}_{2}$ cations and $\mathrm{M}^{\prime}(\mathrm{CN})_{4}$ anions. The $\mathrm{M}^{\prime}$ atom is bonded to four C atoms of the CN groups in a square-planar geometry. The M atom is octahedrally surrounded by six N atoms, four from the CN units and the other two are from two ligand molecules. The ligand molecules lie above and below the layers. The ligands and the layers as blocking units provide empty voids of varying shapes and dimensions, in which guest molecules may be imprisoned [1].

The host structure described above is not unique for the given chemical formula. A number of studies have suggested that similar compositions never support similar structures for the cyanometallate clathrate and host compounds [1, 2]. Of these, dimethylamine (dma) [1], cyclohexylamine [3] and cyclopentylamine [4] as ligands L, give a number of inclusion compounds with a selectivity very different from the Hofmann-type hosts. These hosts can include besides benzene a number of large aromatic guest molecules which have never been found enclathrated into Hofmann-type and the analogous hosts. Some of the inclusions compounds with dma show x-ray diffraction patterns characteristic of
the intercalate structures of these guests between the layered metal complex sheets. The expanded spacing (in the range of 9.2-9.5 Å for toluene, chlorobenzene, bromobenzene, $p$ xylene and naphthalene) has been interpreted in terms of the guest molecules arranged between sheets covered with hydrophobic methyl groups which may form a tunnel-like cavity between the sheets [1].

Keeping these unusual results in mind, we have been exploring the inclusion behaviours of the Hofmann-dmatype hosts with a series of cycloalkylamines and a variety of aromatic and aliphatic guests different in size and shape from those enclathrated in the Hofmann-type hosts [3, 4]. Until now, the sort of hosts we have examined are of the form $\mathrm{ML}_{2} \mathrm{Ni}(\mathrm{CN})_{4}$, where, $\mathrm{M}=\mathrm{Co}$ or $\mathrm{Cd}, \mathrm{L}=$ cyclopentylamine [4], cyclohexylamine [3], cycloheptylamine [5], cyclooctylamine [5].

The host compounds of the above type reported to date have only been confined to a Ni atom in the squareplanar environment [1,3]. We have now prepared a host complex of the form $\mathrm{Cd}(\text { cyclohexylamine })_{2} \operatorname{Pd}(\mathrm{CN})_{4}$ (abbr. Cd-CHA-Pd). It should be noted that several unsuccessful atempts have been made to synthesize the similar host complex of the form $\mathrm{Co}(\text { cyclohexylamine })_{2} \operatorname{Pd}(\mathrm{CN})_{4}$. In this study, we report the sorption processes of the aromatic guests (benzene, toluene, $o$-xylene, $m$-xylene, p-xylene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4dichlorobenzene, 1,4-dibromobenzene and naphthalene) in

[^0]

Figure 1. The model for the Hofmann-diam-type host structure (open circle: 6-coordinate M , solid circle: square-planar Ni , open column: an ambident ligand, thick line: CN bridge and thin line: edge of cavity).
the vapour phase at room temperature. The loss of benzene from the host compounds against time has been measured.

## Experimental

All chemicals used were reagent grade and used without further purification.
$\mathrm{Cd}\left(\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{~N}\right)_{2} \mathrm{Pd}(\mathrm{CN})_{4}$ was prepared by adding 3 millimole of CHA in solution in ethanol (ca. 20 ml ) into 1 millimole of the Hofmann- $\mathrm{H}_{2} \mathrm{O}$-type hydrate $\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Pd}(\mathrm{CN})_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ which was prepared by the procedure similar to the $\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Ni}(\mathrm{CN})_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ complex of Kantarcı and Bülbül [3]. The host complex was obtained in quantitative yield. The freshly prepared complex was analysed for Cd and Pd (by atomic absorption method), C, H and N (by CHN analyser) with the following results (found $\mathrm{C}=37.23 / 36.87, \mathrm{H}=5.31 / 5.03$ and $\mathrm{N}=16.36 / 16.12$.

The clathrate compounds were prepared by leaving the host complex in the saturated guest vapour as described below.

As seen below, the amount of the absorbed and liberated guest molecules were determined by weighing the sample at intervals, and graphs have been drawn as the increase (or decrease) of $n$ against time. Accordingly, a number of spectra have been run for several $n$ values ( $n=0.25,0.50$, $0.75,1.00,1.25,1.50,1.75,2.00,2.25, \ldots)$. Of these, the spectra for $n=2$ are given in Table 2. The spectra for $n<2$ values correspond to the maximum $n$ values attainable.

Infrared spectra of the compounds were recorded in the range $4000-400 \mathrm{~cm}-1$ on a Mattson-1000 FT-IR spectrometer. The samples were prepared as mulls in nujol and fluorolube in a CsI cell.

Normal mode frequencies of CHA (in gas phase) have been calculated at the PW91/6-31G(d) level by using the package Gaussian 98 [6].

## Results and discussion

For the comparison and discussion, the important spectral regions of $\mathrm{CHA}, \mathrm{Ni}(\mathrm{CN})_{4}$, benzene and napthalene species in different chemical states are show in Figure 3 (as a representative illustration).

Before dealing with the inclusion and liberation of the guest moieties in the host complex, it is appropriate to elucidate the host structure on the basis of the available spectral data.

The assignment and the wavenumbers of the fundamental vibrations arising from the $\operatorname{Pd}(\mathrm{CN})_{4}$ and CHA species are given in Table 1 and Table 2, respectively. It will be convenient to divide the vibrations into two, arising from the $\mathrm{Pd}(\mathrm{CN})_{4}$ unit and from the CHA ligand.

## $\mathrm{Pd}(\mathrm{CN})_{4}$ group vibrations

It is well known that the Pd atom in $\operatorname{Pd}(\mathrm{CN})_{4}$ is bonded in a square-planar geometry [7] and surrounded by the $C$ ends of the CN ions. This fact suggests that the host framework of the complex compound $\mathrm{Cd}(\mathrm{CHA})_{2} \mathrm{Pd}(\mathrm{CN})_{4}$ also has a square planar $\operatorname{Pd}(\mathrm{CN})_{4}$ unit. In order to assign the bands attributable to the $\operatorname{Pd}(\mathrm{CN})_{4}$ ion in the spectra considered, we refer to the work of Jones [8] who presented vibrational data for the $\operatorname{Pd}(\mathrm{CN})_{4}$ ion which was treated as an isolated unit with $\mathrm{D}_{4 \mathrm{~h}}$ symmetry. Thus these spectral data can be used as a reference to comment on vibrational changes when $\mathrm{Cd}-\mathrm{NC}$ bonding takes place. The spectral data for the $\mathrm{Pd}(\mathrm{CN})_{4}$ groups in the compounds are given in Table 1, along with spectral data of the $\operatorname{Pd}(\mathrm{CN})_{4}$ anion. The assigned wavenumbers of the $\operatorname{Pd}(\mathrm{CN})_{4}$ units of the host complex studied are much higher than those for the isolated $\operatorname{Pd}(\mathrm{CN})_{4}$ ion (Table 1). Such frequency shifts have been observed for Hofmann-type host structures [9-13], and are attributed to the mechanical coupling of the internal modes of $\mathrm{Ni}(\mathrm{CN})_{4}$ with the $\mathrm{M}-\mathrm{NC}$ vibrations. It follows that the N -termini of $\mathrm{Pd}(\mathrm{CN})_{4}$ unit are bound to a Cd atom in the host complex.

## Cyclohexylamine vibrations

Up to now, there has been no extensive vibrational study of the cyclohexylamine molecule. However, the infrared and Raman spectral data for cyclopentylamine (CPA) in the gas phase [14], the infrared spectra of cyclohexylamine in the gas phase [15] and in dilute solutions ( $\cong 0.2 \mathrm{M}$ ) in nujol and fluorolube (as inert solvents) [3] have been reported. The proposed assignment of the infrared bands of CHA in the gas phase, in nujol (or fluorolube) and in the clathrate compounds were made taking into consideration the gas phase FT-infrared and Raman spectral data for cyclopentylamine (with a gauche orientation of the $-\mathrm{NH}_{2}$ group) [14] that contain very similar chemical groups to those of cyclohexylamine. In order to facilitate the assignments, we have also observed the animations corresponding to the calculated frequencies by using HyperChem 7 [16]. As a whole, these assignments are in agreement with the calculated results (unpublished conformational studies have shown that isolated CHA should be exist with a trans orientation of the $-\mathrm{NH}_{2}$

Table 1. The wavenumbers of the $\operatorname{Pd}(\mathrm{CN})_{4}$ unit of the $\mathrm{Cd}(\mathrm{CHA})_{2} \operatorname{Pd}(\mathrm{CN})_{4}$ complexes

| Assignment ${ }^{\text {a }}$ | $\operatorname{Pd}(\mathrm{CN})_{4}^{-2 ~ a, b}$ | Cd-CHA-Pd | Cd-CHA-Pd-2G <br> $\mathrm{G}=$ Benzene | $\begin{aligned} & \text { Cd-CHA-Pd-2G } \\ & \text { G = Toluene } \end{aligned}$ | $\begin{aligned} & \text { Cd-CHA-Pd-2G } \\ & \mathrm{G}=o \text {-Xylene } \end{aligned}$ | $\begin{aligned} & \text { Cd-CHA-Pd-2G } \\ & \mathrm{G}=m \text {-Xylene } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{A}_{1 \mathrm{~g}}, v_{1}$ | (2161) | - | - | - | - | - |
| $\mathrm{B}_{1 \mathrm{~g}}, \nu_{4}$ | (2147) | - | - | - | - | - |
| $\nu_{8}, \nu(\mathrm{CN}), \mathrm{E}_{\mathrm{u}}$ | 2142 | 2162 vs | 2167 vs | 2163 vs | 2164 s | 2162 vs |
| $\nu_{8}, \nu\left(\mathrm{C}^{13} \mathrm{~N}\right), \mathrm{E}_{\mathrm{u}}$ | - | 2137 sh | 2141 w | 2139 w | 2139 sh | 2139 w |
| Hot band | - | 2122 w | 2127 w | 2130 w | 2130 w | 2130 w |
| $\nu_{9}, \nu(\mathrm{PdC}), \mathrm{E}_{\mathrm{u}}$ | 503 | 490 w | 492 w | 490 w | 491 w | 493 w |
| $\mathrm{A}_{1 \mathrm{~g}}, \nu_{2}$ | (430) | - | - | - | - | - |
| $\nu_{10}, \delta(\mathrm{PdCN}), \mathrm{E}_{\mathrm{u}}$ | 393 | 402 vs | 403 vs | 401 vs | 403 s | 402 s |
| $\mathrm{Eg}_{\mathrm{g}}, \nu_{16}$ | (295) | - | - | - | - | - |
| Assignment ${ }^{\text {a }}$ | $\operatorname{Pd}(\mathrm{CN})_{4}^{-2 ~ a, b}$ | Cd-CHA-Pd-2G $\mathrm{G}=p$-Xylene | Cd-CHA-Pd-2G <br> G=1,2-dichlorobenzene | Cd-CHA-Pd-2G <br> G=1,3-dichlorobenzene | Cd-CHA-Pd-0.4G <br> $\mathrm{G}=1,4$-dichlorobenzene | Cd-CHA-Pd-1.4G $\mathrm{G}=$ Naphthalene |
| $\mathrm{A}_{1 \mathrm{~g}}, v_{1}$ | (2161) | - | - | - | - | - |
| $\mathrm{B}_{1 \mathrm{~g}}, v_{4}$ | (2147) | - | 㖪 | - | - | - |
| $v_{8}, v(\mathrm{CN}), \mathrm{E}_{\mathrm{u}}$ | 2142 | 2163 vs | 2164 vs | 2163 vs | 2161 vs | 2161 vs |
| $v_{8}, v\left(\mathrm{C}^{13} \mathrm{~N}\right), \mathrm{E}_{\mathrm{u}}$ | - | 2139 vw | 2136 vw | 2136 sh | 2140 vw | 2130 vw |
| Hot band | - | 2130 w | 2130 vw | 2121 w | 2121 sh | 2121 vw, w |
| $\nu_{9}, \nu(\mathrm{PdC}), \mathrm{E}_{\mathrm{u}}$ | 503 | 489 w | 488 w, vw | 490 vw | 493 w | no |
| $\mathrm{A}_{1 \mathrm{~g}}, \nu_{2}$ | (430) | - | - | - | - | - |
| $\nu_{10}, \delta(\mathrm{PdCN}), \mathrm{E}_{\mathrm{u}}$ | 393 | 401 s | 401 s | 401 s | 402 s | 401 s |
| $\mathrm{Eg}_{\mathrm{g}}, \nu_{16}$ | (295) | - | - | - | - | - |

${ }^{\text {a }}$ Taken from Ref. [8].
${ }^{\mathrm{b}}$ Raman frequencies are in brackets.
Abbr.: $\mathrm{v}=$ very, $\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=\mathrm{weak}, \mathrm{sh}=$ shoulder, $\mathrm{no}=$ not observed.
group). As is known, this sort of calculation overestimates the force constants, and hence the obtained vibrational frequencies are higher than the experimental ones. The usually applied correction factor of 0.9573 [17] does not allow us to reproduce precisely the experimental frequencies. The scaled frequencies (cm-1) are given in Table 2a,b. This is due to the fact that the vibrational frequencies are derived from the harmonic approximation. Large amplitude (floppy) vibrational modes often exhibit significant anharmonicity that may increase errors in computed frequencies. In addition to anharmonicity, generally there might be coupling between vibrational modes which is not accounted for in the computational model.

The N-H stretching wavenumbers of the cyclohexylamine molecules in the complex compound are found to be lower than those in the gas phase or in the dilute solutions (Table 2a,b). These downward frequency shifts may be explained as weakening of the $\mathrm{N}-\mathrm{H}$ bonds resulting from the electron draining from the N atom on account of its coordination to the Cd atom. A metal dependent downward frequency shift is also observed for the $\mathrm{NH}_{2}$ scissoring mode (Table 2a,b). Similar shifts have been measured in metal-coordinated aniline compounds [18-20].

## Gravimetric results and spectral changes upon enclathration

When the host complex is subjected to the guest vapour in equilibrium with their liquid phases in a desiccator at ambient conditions, the guest molecules are sorbed by the host


Figure 2. Decay of $n$ (number of benzene molecules) against time for the Cd-CHA-Pd-Benzene system.
at a rate depending on the vapour pressure of the guest. The amount of the sorbed guest molecules was determined gravimetrically by leaving the host complex in the guest vapour to constant weight. The number of guest molecules per molecular formula of the host complex, $n$, and their sorbing duration (the times required to attain constant weight) are given in Table 3 (It should be noted that when these preparations are attempted in ethanol solution products with a much lower number of guest molecules (in the range 0-0.4) than those in Table 3 are obtained. This is certainly due to liberation of guest molecules during drying of the products in open air). The most outstanding fact in Table 3 is that the number of guest benzene and toluene molecules appears to be more than the formal maximum number of 2 found in the Hofmann-type clathrates prepared previously [3, 4].
Table 2a. Assignment and IR wavenumbers for CHA in the complex and clathrates

| Assignment ${ }^{\text {a }}$ (gas) ${ }^{a}$ | $\begin{aligned} & \text { CPA } \\ & (\mathrm{gas})^{\mathrm{b}} \end{aligned}$ | CHA <br> and fluorolube ${ }^{c}$ | CHA in nujol (liquid) $^{\mathrm{c}}$ | CHA <br> (calculated) | CHA | Cd-CHA-Ni ${ }^{\text {c }}$ | Cd-CHA-Pd $\mathrm{G}=\text { Benzene }$ | $\begin{aligned} & \mathrm{Cd}-\mathrm{CHA}-\mathrm{Ni}-2 \mathrm{G}^{\mathrm{c}} \\ & \mathrm{G}=\text { Benzene } \end{aligned}$ | $\begin{aligned} & \text { Cd-CHA-Pd-2G } \\ & \text { G=Toluene } \end{aligned}$ | Cd-CHA-Pd-2G |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{NH}_{2}$ antisymm.str. | 3400 vw | (3410 vw) | no | 3383 s | 3353 m | 3405 | 3355 s | 3353 s | 3332 s | 3332 s | 3332 m |
| $\mathrm{NH}_{2}$ symmetric str. | 3339 w | (3336 m) | 3336 w | 3320 m | 3280 m | 3319 | 3292 m | 3290 m | 3277 m | 3277 m | 3272 m |
| $\mathrm{CH}_{2}$ antisymm. str. | 2968 vvs | (2970 vs) | 2934 vs | no | no | 2972 | 2971 w | 2971 w | 2972 w | 2966 w | 2970 vw , sh |
|  |  |  | 2865 s | no | no | 2939 | 2948 m, sh | 2957 w, sh | 2948 w, sh | no | no |
| CH-stretch |  | (2935 sh) | no | no | no | 2905 | 2939 w, sh | 2942 w, sh | 2937 w, sh | 2937 w | 2943 m, sh |
| $\mathrm{CH}_{2}$ antisymm. str. |  |  | 2922 s , sh | 2934 vs | 2926 vs | 2903 | 2920 ms | 2920 s | 2919 vs | 2921 s | 2921 s |
| $\mathrm{CH}_{2}$ symmetric str. |  |  | 2874 m, sh | 2912 m , sh | 2897 m , sh | 2899 | 2905 m , sh | 2907 m, sh | 2905 m , sh | 2906 m , sh | 2906 m, sh |
|  | 2875 vvs | (2882 s) | 2865 s | no | no | 2887 | 2888 w, sh | 2887 w, sh | 2888 w, sh | no | 2885 w, sh |
|  | 2700 w |  | 2859 s, sh | 2858 ms | 2853 ms | 2885 | 2850 ms | 2850 ms | 2851 vs | 2851 s | 2850 m |
| $\mathrm{NH}_{2}$ deformations | 1624 s |  | 1620 m | 1616 ms | 1598 ms | 1623 | 1580 ms | 1579 ms | 1584 ms | 1579 s | 1579 s |
| $\mathrm{CH}_{2}$ deformations |  | (1472 sh) | 1468 w, sh | 1466 w | no | 1465 | 1465 vw | 1465 w | 1464 w | 1465 w | 1464 w, sh |
|  | 1461 s | (1443 s) | 1456 m | 1453 ms | 1449 ms | 1450 | 1452 ms | 1452 ms | 1451 vs | 1452 vs | 1451 m |
|  |  | (1380 vw) |  | 1377 m | 1377 m | 1378 | 1387 w, sh | 1389 w | 1389 w, sh | 1389 w | 1389 w |
| C-H in plane bend | 1356 s | (1350 vw) | 1373 m | no | 1347 w | 1341 | no | 1348 vw | no | 1347 vw | 1347 w |
| $\mathrm{CH}_{2}$ symm. wagg | 1322 vvw |  | 1310 vw | 1309 w | 1312 w, sh | 1338 | 1312 vw | 1312 vw | 1310 w | 1312 vw | 1314 w |
| $\mathrm{CH}_{2}$ antisymm.wag |  |  | no | no | 1281 vw, sh | 1286 | 1305 vw | 1302 vw , sh | 1304 vw, sh | 1304 vw , sh | no |
|  |  | (1278 bd) | 1258 w, bd | no | 1281 w | 1258 | 1277 vw | 1272 vw | 1275 vw | 1274 vw | 1273 vw |
| $\mathrm{CH}_{2}$ antisym. twist |  | (1226 bd) | 1230 w, sh | 1259 w | 1259 w | 1243 | 1257 vw,s h | 1256 w | 1256 w | 1255 vw | 1256 w |
|  | 1204 sh | (1188 bd) | 1206 w | 1203 w | 1205 w | 1239 | 1213 m | 1211 m | 1215 m | 1215 m | 1213 w |
| C-N stretch | 1184 sh |  | 1194 w | 1170 w | 1173 w | 1098 | 1169 m | 1170 m | 1170 m | 1170 w | 1170 w |
| $\mathrm{CH}_{2}$ antisymm. twist | 1102 sh |  | 1098 w | 1105 m | 1102 m | 1083 | 1114 m | 1112 m | 1117 m | 1118 m | 1113 m |
| CH out-of-plane ben | 1056 m | (1048 sh) | 1036 w | 1061 vw | no | 1035 | 1062 vw | 1062 w | 1063 w, sh | 1063 w, sh | 1064 vw |
| Ring deformation | 1012 w | (1020 m) | 1010 vw | no | no | 1004 | 1000 vs | 1002 vs | 1016 vs | 1017 vs | 1001 vs |
| $\mathrm{CH}_{2}$ symmetric rock |  | (950 w) | 985 vw | 975 w | 978 m | 952 | 968 s | 967 s | 965 s | 967 vs | 967 s |
| $\mathrm{CH}_{2}$ antisymm. rock | 948 w |  | 926 vw | 926 m | 932 m | 907 | 917 m | 919 m | 918 w | 918 m | 918 m |
| Ring breathing mode |  | (892 vs) | 888 w | 893 s | 898 | 881 | 889 s | 890 s | 889 s | 889 m | 889 ms |
| $\mathrm{CH}_{2}$ symmetric rock |  | (862 sh) | no | 860 w, sh | 862 m | 862 | 875 m | 874 w | 878 w | 876 w | 876 w |
| Ring deformations |  | (834 sh) | 837 vw , sh | 843 | 840 | 844 | 840 w | 841 w | 842 w | 842 w | 843 w |
| $\mathrm{NH}_{2}$ wagging | 803 sh |  | 800 w | 775 s | 778 m | 825 | 783 w | 783 w | 784 w | 784 w | 785 w |
| $\mathrm{CH}_{2}$ antisymm. rock | 770 vw |  | 770 w | no | no | 762 | no | 769 vw | 769 vw | 769 vw | 772 vw |
| Ring deformation |  |  | no | no | no | 760 | 567 m | 566 s | 565 s | 603 vw | 567 ms |
|  | 545 sh | (538 m) | 557 vvw | 554 m | 556 w | 528 | 532 s | 533 s | 531 s | 534 s | 532 s |
|  | 462 sh |  | no | 466 w | 464 w | 439 | no | no | 481 w | 481 vw | no |
| C-N in-plane-bend | 460 w | (460 w) | 460 vvw | 452 w | no | 430 | 449 w , sh | 449 w | 445 w , sh | 446 w | 448 w |

Abbr.: $\mathrm{v}=$ very, $\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak, $\mathrm{sh}=$ shoulder, $\mathrm{bd}=$ broad, $\mathrm{no}=$ not observed.
Raman frequencies are in parenthesis.
Table 2b. Assignment and IR wavenumbers for CHA in the clathrates

| Assignment $\mathrm{G}=o \text {-Xylene }$ | $\begin{aligned} & \text { Cd-CHA-Pd-2G } \\ & \mathrm{G}=m \text {-Xylene } \end{aligned}$ | $\begin{aligned} & \text { Cd-CHA-Pd-2G } \\ & \mathrm{G}=p \text {-Xylene } \end{aligned}$ | Cd-CHA-Pd-2G <br> $\mathrm{G}=1,2$-dichlorobenzene | Cd-CHA-Pd-2G <br> $\mathrm{G}=$ 1,3-dichlorobenzene | Cd-CHA-Pd-2G <br> $\mathrm{G}=$ 1,4-dichlorobenzene | Cd-CHA-Pd-0.41G <br> $\mathrm{G}=$ Napthalene | Cd-CHA-Pd-1.4G |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{NH}_{2}$ antisymm. str. | 3352 vw, 3334 m | 3352 s, 3340 sh | $3353 \mathrm{~m}, 3336 \mathrm{~m}$ | 3352 w, 3334 m | 3353 m, 3335 w | 3353 m, 3334 w | 3353 m, 3331 s |
| $\mathrm{NH}_{2}$ symm. str. | 3290 sh, 3276 w | 3290 m, 3276 sh | 3290 m, 3279 m | 3290 w, 3276 m | 3290 m, 3276 w | 3290 m, 3274 w | 3290 w, 3275 m |
| $\mathrm{CH}_{2}$ antisymm. str. | 2971 w | 2971 w | 2971 vw,sh | no | 2971 w | 2972 w | 2971 w, sh |
|  | no | 2957 m, sh | no | 2964 vw | 2958 w, sh | 2957 w, sh | no |
| CH-stretch | 2943 m , sh | 2938 w, sh | 2941 w, sh | 2933 w, sh | 2942 m | 2942 m | no |
| $\mathrm{CH}_{2}$ antisymm. str. | 2921 vs | 2921 vs | 2921 vs | 2921 s | 2920 vs | 2920 vs | 2922 vs |
| $\mathrm{CH}_{2}$ symmetric str. | 2903 m , sh | 2906 m, sh | 2907 m, sh | 2906 m, sh | 2906 m, sh | no | 2907 m, sh |
|  | 2889 w, sh | 2887 w, sh | no | no | no | no | no |
|  | 2851 s | 2850 vs | 2850 m | 2851 s | 2850 s | 2849 s | 2848 s |
| $\mathrm{NH}_{2}$ deformations | 1579 m | 1579 s | 1579 s | 1579 s | 1578 vs | 1577 m | 1579 m |
| $\mathrm{CH}_{2}$ deformations | 1466 w | 1464 w, sh | 1464 w, sh | 1465 w | 1477 w | 1476 w | 1463 w |
|  | 1450 vs | 1457 vs | 1451 m , sh | 1458 vs | 1451 s | 1451 s | 1451 s |
|  | 1385 w | 1389 m | 1388 w | 1389 w | 1388 m | 1389 m | 1390 m |
| C-H in-plane bend | no | no | no | no | no | no | no |
| $\mathrm{CH}_{2}$ symm. wag | 1313 w | 1311w | 1314 vw | 1313 vw | 1312 vw | 1312 vw | 1313 w |
| $\mathrm{CH}_{2}$ antisymm. wag | 1304 vw | 1304 vw, sh | no | no | 1308 vw , sh | 1306 vw, sh | 1303 vw, sh |
|  | 1275 vw | 1272 vw | 1276 vw | 1274 w | 1274 vw | 1274 w, sh | 1273 m |
| $\mathrm{CH}_{2}$ antisymm. twist | 1257 w | 1257 w | 1254 w | 1252 m | 1257 w | 1257 w | 1259 w, sh |
|  | 1215 w | 1212 m | 1213 m | 1213 m | 1213 m | 1212 w | 1213 m |
| $\mathrm{C}-\mathrm{N}$ stretch | 1171 w | 1170 m | 1172 m | 1171 m | 1171 w | 1171 w | 1167 w |
| $\mathrm{CH}_{2}$ antisymm. twist | 1115 m | 1113 m | 1114 w | 1115 w, sh | 1112 m | 1113 m | 1115 m |
| CH out-of-plane bend | 1065 w | 1063 vw | 1067 vw | 1066 vw | no | 1063 vw | 1068 w |
| Ring deformation | 1014 s | 1002 vs | 1005 s | 1004 m | 1002 vs | 1002 vs | 1019 vs |
| $\mathrm{CH}_{2}$ symm rock | 967 m | 968 m | 968 m | 967 m | 968 m | 967 m | 968 s |
| $\mathrm{CH}_{2}$ antisymm rock | 917 m | 918 m | 917 m | 919 w | 918 m | 919 w | 919 w |
| Ring breathing mode | 890 m | 890 m | 890 m | 891 m | 890 m | 890 m | 894 m |
| $\mathrm{CH}_{2}$ symm rock | 874 vw | 876 w | 876 w | 880 vw | 876 w, sh | 876 w | 882 w |
| Ring deformations | 842 w | 843 w | 844 w | 845 w | 843 vw | 842 vw | 844 w |
| $\mathrm{NH}_{2}$ wag | 784 vw | 783 w | 786 w | 785 w | no | 783 vw | 784 s |
| $\mathrm{CH}_{2}$ antisymm rock | 771 vw | no | no | no | no | 772 m | 770 w |
| Ring deformation | 569 s | 567 m | 569 m | 568 m | 567 m | 569 m | 578 m |
|  | 532 s | 534 m | 531 m | 532 m | 532 m | 532 m | 539 m |
|  | 481 vw | no | 469 vw | 490 w | 473 vw | 473 vw | 468 vw |
| C-N in-plane bend | 449 w, sh | 448 w | 447 w, sh | 439 w | 448 w | 447 w | 445 w |

[^1]Table 3. $n$, the number of the guest molecules, included in the Cd-CHA-Pd hosts, and the duration of the inclusion ( the time required to attain constant weight)

| Host | Guest | $n$ | Duration (approx.) |
| :--- | :--- | :--- | :--- |
| Cd-CHA-Pd | Benzene | 5.01 | 7 days |
| Cd-CHA-Pd | Toluene | 3.50 | 24 days |
| Cd-CHA-Pd | $o$-Xylene | 2.20 | 38 days |
| Cd-CHA-Pd | $m$-Xylene | 2.11 | 41 days |
| Cd-CHA-Pd | p-Xylene | 3.43 | 37 days |
| Cd-CHA-Pd | 1,2-Dichlorobenzene | 4.42 | 45 days |
| Cd-CHA-Pd | 1,3-Dichlorobenzene | 4.43 | 2 months |
| Cd-CHA-Pd | 1,4-Dichlorobenzene | 0.41 | 6 months |
| Cd-CHA-Pd | 1,4-Dibromobenzene | 0.00 | 30 days |
| Cd-CHA-Pd | Naphthalene | 1.40 | 8 months |

At this point, the structure of the compounds with $n$ values higher than 2 may be questioned: are the guests simply adsorbed on the surface? If this were so then two sets of guest bands would be expected, one for the guest and one for the surface adsorbed species. In this context we report, one additional observation which lends support to this view: several Hofmann-type host complexes with different host moities $\left(\mathrm{M}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Ni}(\mathrm{CN})_{4}(\mathrm{M}=\mathrm{Co}, \mathrm{Ni}\right.$ or Cd$\left.)\right)$ were subjected to benzene (or toluene) vapour in equilibrium with its liquid phase in a desiccator at ambient conditions for a fortnight. Gravimetric measurements did not, however, indicate any increase in the weights of the host compounds. When the clathrates under study are left in the open air, the number of guest molecules, $n$, decreases rapidly down to 2 , and then, continues to decrease at a slower rate. This liberation process for benzene in Cd-CHA-Pd is illustrated in Figure 2 which plots the decrease of $n$ against time. The discontinuity at $n=2$ on the plot suggests that the host framework with flexible ligand molecules for $n>2$ differs from $\leq 2$. These structural changes are also indicated by the infrared spectra of the compounds with varying number of guest molecules. These and other notable spectral features arising from the host and the guest moieties are as follows.

As the number of guest benzene molecules gradually increases in the Cd-CHA-Pd host, the band of $\operatorname{Pd}(\mathrm{CN})_{4}$ at $2162 \mathrm{~cm}^{-1}$ (Table 1) decreases in intensity and a corresponding new band at $2167 \mathrm{~cm}^{-1}$ grows in intensity. For $n$ $=2$, the former band ( $2162 \mathrm{~cm}^{-1}$ ) disappears and the latter appears as a single band ( $2167 \mathrm{~cm}^{-1}$ ). When $n$ exceeds 2, another new band appears at $2172 \mathrm{~cm}^{-1}$ as a twin to the band at $2167 \mathrm{~cm}^{-1}$. It is interesting to note that these twin bands of almost similar intensity are independent of the guest number for $n>2$. Similar observations have also been noted for M (cyclohexylamine) $)_{2} \mathrm{Ni}(\mathrm{CN})_{4}(\mathrm{M}=\mathrm{Co}$ or Cd ) host complexes [3]. These spectral features may be due to some deviation from the square planar symmetry of the $\operatorname{Pd}(\mathrm{CN})_{4}$ unit $\left(\mathrm{D}_{4 \mathrm{~h}}\right)$ resulting in splitting of the $\nu_{8}$ vibration of the degenerate $\mathrm{E}_{\mathrm{u}}$ representation. However, this view is discounted by the evidence that the band frequencies of the twin bands ( $2172 / 2167 \mathrm{~cm}^{-1}$ ) are unchanged with respect to the $n$ values of 2 to 5 , i.e., the degree of the deviation from
the planar structure and, in turn, the value of the frequency splitting of the $v_{8}$ band $\left(\mathrm{E}_{\mathrm{u}}\right)$ should vary with the $n$ values. In addition to this, the possibility that a Raman active mode is being observed is also discounted, since the Raman active modes ( $\nu_{1}, \mathrm{~A}_{1 \mathrm{~g}}$ and $\nu_{4}, \mathrm{~B}_{1 \mathrm{~g}}$ ) must be observed at higher frequencies than the infrared active mode $\nu_{8}, \mathrm{E}_{\mathrm{u}}$ [3]. Another conceivable suggestion may be that the primary ligand $\mathrm{Pd}(\mathrm{CN})_{4}$ behaves as a bidentate ligand (as $\left.\mathrm{NC}-\mathrm{Pd}(\mathrm{CN})_{2}-\mathrm{CN}\right)$ in the host framework. Similarly a $\mathrm{NC}-\mathrm{Ni}(\mathrm{CN})_{2}-\mathrm{CN}$ unit has also been found in some clathrates of chemical formula given for Hofmann-type clathrates [21]. It should be noted that these suggestions are tentative and possibly speculative but they are consistent with the present spectral data. Similar observations have been made for the other guest molecules (Table 1).

As for the spectral changes in the guest molecules, the most outstanding features are as follows: the CH out-ofplane vibrational bands are found to be shifted to higher frequencies from that of the free molecule (Table 4). Similar positive frequency shifts were observed for Hofmann-type clathrates and explained as being due to the presence of a weak hydrogen bond between $\pi$ electrons located above and below the plane of the benzene ring and the ammonia molecules of the host lattice $[9,10]$. Similar shifts have also been found for other members of Hofmann-type clathrates $[12,13,18]$. Therefore, we may reasonably suggest that the frequency shift in our compounds are due to the $\pi$ electron donation from the guests to the hydrogen atoms of the $\mathrm{NH}_{2}$ group of the ligand molecule which has a more electrophilic character caused by the coordination. The values of these shifts decrease in the order of increasing guest size.

Another notable feature of the CH out-of-plane vibration in benzene is that it appears as a triplet for $\mathrm{M}(\mathrm{en}) \mathrm{M}^{\prime}(\mathrm{CN})_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6} \quad\left(\mathrm{M}=\mathrm{Mn}\right.$ or $\mathrm{Cd}, \quad \mathrm{M}^{\prime}=$ Cd or Hg ) [32], a doublet for our compounds and for $\mathrm{M}(\mathrm{CHA})_{2} \mathrm{Ni}(\mathrm{CN})_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{M}=\mathrm{Co}$ or Cd$)$ [3], $\mathrm{Cd}($ pyrazine $) \mathrm{M}^{\prime}(\mathrm{CN})_{4} \cdot \mathrm{C}_{6} \mathrm{H}_{6} \quad\left(\mathrm{M}^{\prime}=\mathrm{Cd}\right.$ or Hg$)$ [33]. $\mathrm{M}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{M}^{\prime}(\mathrm{CN})_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}\left(\mathrm{M}=\mathrm{Mn}\right.$ or $\mathrm{Cd}, \mathrm{M}^{\prime}=\mathrm{Cd}$ or $\mathrm{Hg})$ [34] and $\mathrm{M}(\mathrm{tn}) \mathrm{Zn}(\mathrm{CN})_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{M}=\mathrm{Mn}$ or Zn$)$ [35], and a singlet for $\mathrm{M}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Ni}(\mathrm{CN})_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{M}=\mathrm{Mn}, \mathrm{Fe}, \mathrm{Ni}$, $\mathrm{Cu}, \mathrm{Zn}$ or Cd$)$ and $\mathrm{Cd}\left(4,4\right.$ ?- bipyridyl) $\mathrm{M}^{\prime}(\mathrm{CN})_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}\left(\mathrm{M}^{\prime}\right.$ $=\mathrm{Cd}$ or Hg ) [36]. In the case of doublet or triplet features the splittings have been ascribed to crystal field effects (strong host-guest interactions) [9-11, 32-36]. In the case of a single band, because of the larger cavities due to the ligands, the host-guest interactions are expected not to be effective for splitting [36]. Splitting has also been observed for toluene and $o$-xylene (Table 4). The band positions of benzene and toluene do not depend on the value of $n(n \leq 2 n>2)$; the only differences are in the band intensities.

The noteworthy spectral features arising from the ligand molecules on guest inclusion are as follows: on going from the host complex to the clathrate the symetric and asymmetric stretching frequencies of $\mathrm{NH}_{2}$ decrease (Table 2a, b). This downward shift may be due to hydrogen bonding between the $\pi$ electron of the guest ring(s) and the cyclohexylamine ligand molecules, as has been suggested for the


Figure 3. The important IR bands of $\mathrm{CHA}, \mathrm{Pd}(\mathrm{CN})_{4}$, benzene and naphthalene species in different chemical states related to Cd-CHA-Pd-Guest system (All compounds are in nujol).

Table 4. CH out-of-plane vibrational wavenumbers $\left(\mathrm{cm}^{-1}\right)$ of the guests in the clathrates

| Guest | Not enclathrated guest | Co-CHA-Ni ${ }^{\text {g }}$ | Cd-CHA-Ni ${ }^{\text {g }}$ | Cd-CHA-Pd |
| :---: | :---: | :---: | :---: | :---: |
| Benzene ${ }^{\text {a }}$ | 675 (in nujol) | 688 s/684 vs | 687 s | 687 vs |
|  |  | 678 s |  | 678 vs |
| Toluene ${ }^{\text {b }}$ | 734 (liquid) | 734 vs | 734 vs | 733 vs |
|  |  | 728 vs | 727 vs | 728 vs |
| $o$-Xylenec | 741 (liquid) | 743 vs | 741 vs | 752 vs |
|  |  | 755 vs | 752 vs | 753 vs |
| $m$-Xylene ${ }^{\text {d }}$ | 768 (liquid) | 769 vs | 767 vs | 768 vs |
| $p$-Xylenee | 795 (liquid) | 796 vs | 795 vs | 750 vs |
| 1,2-dichlorobenzene ${ }^{\text {c }}$ | $748\left(\text { in } \mathrm{CCl}_{4} \text { and } \mathrm{CS}_{2}\right)$ | 748 vs | - | 748 vs |
|  |  |  |  | 759 vs |
| 1,3-dichlorobenzene ${ }^{\text {d }}$ | 784 (in $\mathrm{CCl}_{4}$ and $\mathrm{CS}_{2}$ ) | - | - | 785 vs |
| 1,4-dichlorobenzene ${ }^{\text {f }}$ | 819 (gas) | - | - | 818 m |
| Napthalened | 782 (in $\mathrm{CCl}_{4}$ and $\mathrm{CS}_{2}$ ) | - | 786 vvs | 787 vvs |

${ }^{\mathrm{a}}$ Taken from Ref. [22].
${ }^{\mathrm{b}}$ Taken from Ref. [23].
${ }^{\mathrm{c}}$ Taken from Ref. [25].
${ }^{\mathrm{d}}$ Taken from Ref. [26].
${ }^{\mathrm{e}}$ Taken from Ref. [28].
${ }^{\mathrm{f}}$ Taken from Ref. [27].
${ }^{\mathrm{g}}$ Taken from Ref. [3].
Abbr.: $\mathrm{v}=$ very, $\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak, $\mathrm{sh}=$ shoulder.

Hofmann-type benzene clathrates with amine and diamine ligands [32, 35].

Based on the present data, it is not possible to determine the configuration of the ligand or guest molecules in the clathrate studies. As in the Hofmann-type and Hofmann-Tdtype benzene clathrates, the relative orientation of the $\mathrm{N}-\mathrm{H}$ bonds of cyclohexylamine with respect to the axis of the $\pi$ cloud of the guest must be the one most favourable for hydrogen bonding [37].

## Selective absorption and separation of guest molecules

The phenomena just described imply the use of the host complexes for selective absorption and separations of isomeric guest molecules. For these purposes three experiments have been performed: (i) When the host complex Cd-CHAPd was placed in a desiccator containing a mixture of benzene and toluene vapour with a mole ratio of $1 / 1$, the benzene clathrate was obtained after a week. Infrared spectra of this show no sign of a toluene molecule in the compound, only benzene ( $n=5$ ). (ii) When the toluene clathrate Cd-CHA-$\mathrm{Pd}-\mathrm{To}$ was placed in a desiccator containing benzene and toluene vapour as before, the benzene clathrate was obtained after two weeks ( $n=5$ ). (iii) The host complex absorbed $m$-xylene, $p$-xylene and $o$-xylene, from the $o$-, $m$ - and $p$ xylene mixture with mole ratios of 1:1:1. The former two results suggest that the host complex compound presented here may be employed for selective absorption.

It should be noted that experiments with a large number of aromatic guest molecules and host complexes with $\mathrm{M}=\mathrm{Mn}, \mathrm{Fe}, \mathrm{Cu}, \mathrm{Ni}, \mathrm{Zn}$ or $\mathrm{Cd}, \mathrm{M}^{\prime}=\mathrm{Ni}, \mathrm{Pd}$ or Pt and a series of cycloalkylamines (cyclopropylamine, cyclobutylamine, cyclopentyl amine, cyclohexylamine, cycloheptylamine, cyclooctylamine, cyclododecylamine, cyclohexyldiamine, cycloheptyl cyanide, cycloheptanecarbonitrile, cyclohexanecar-
bonitrile, cyclohexyl isocyanide, cyclohexyl isothiocyanate and cyclohexyl mercaptan) are in progress.

## Acknowledgements

The authors are very grateful to the Scientific and Technical Research Council of Turkey, Gazi University Research Fund and Osmangazi University Research Fund for their financial support.

## References

1. T. Iwamoto: In J.L. Atwood, J.E.D. Davies and D.D. MacNicol (eds.), The Hofmann-type and Related Inclusion compounds, Inclusion compounds, Vol. 4, Academic Press (1984), pp. 29-57.
2. S. Nishikiori and T. Iwamoto: Chem. Lett. 1035 (1982).
3. Z. Kantarci and M.M. Bülbül: J. Incl. Phenom. 40, 105 (2001).
4. Z. Kantarci and C. Bayrak: J. Incl. Phenom. (submitted).
5. Z. Kantarci and K.Z. Gümüş: J. Incl. Phenom. (in preparation).
6. Gaussian 98 (Revision A.1), M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D. J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B.G. Johnson, W. Chen, M.W. Wong, J.L. Andres, M. Head-Gordon, E.S. Replogle and J.A. Pople, Gaussian, Inc., Pittsburgh PA, 1998.
7. F.A. Cotton and G. Wilkinson: Advanced Inorganic Chemistry, WileyInterscience (1980).
8. L.H. Jones: Inorganic Vibration Spectroscopy, Marcel Dekker (1971), p. 129.
9. S. Akyüz, A.B. Dempster, R.L. Morehouse, and S. Suzuki: J. Mol.Struct. 17, 105 (1973).
10. S. Akyüz, A.B. Dempster, and R.L. Morehouse: Spectrochim. Acta 30A, 1183 (1974).
11. S. Akyüz, A.B. Dempster, and R.L. Morehouse: Spectrochim. Acta 30A, 1189 (1974).
12. S. Bayari, Z. Kantarci, and S. Akyüz: J. Mol. Struct. 351, 19 (1995).
13. N. Karacan, Z. Kantarci, and S. Akyüz: Spectrochim. Acta A52, 771 (1996).
14. V.F. Kalasinsky and T.S. Little: J. Raman Spectrosc. 9, 224 (1980).
15. NIST Mass Spec Data Center, S.E. Stein, director: 'IR and Mass Spectra' In P.J. Linstrom and W.G. Mallard (eds.), NIST Chemistry Webbook, NIST Standard Reference Database Number 69, July 2001, National Institute of Standards and Technology, Gaithersburg MD, 20899 (http://webbook.nist.gov).
16. HyperChem(TM), Hypercube, Inc., 1115 NW 4th Street, Gainesville, Florida 32601, USA.
17. A.P. Scott and L. Radom: J. Phys. Chem. 16502 (1996).
18. S. Akyüz and J.E.D. Davies: J. Mol. Struct. 97457 (1982).
19. S. Bayar, C. Bayrak, and Z. Kantarci: J. Incl. Phenom. 38, 23 (2000).
20. D.A. Thornton: J. Coord. Chem. 24, 261 (1991).
21. T. Iwamoto: J. Incl. Phenom. 24, 61 (1996).
22. P.C. Painter and J.L. Koenig: Spectrochim. Acta 33A, 1003 (1977).
23. A.P. Hitchcock and J.D. Laposa: J. Mol. Spectrosc. 54, 223 (1975).
24. E. Kasap and A. Tzbay: J.Incl. Phenom. 28, 335 (1997).
25. J.H.S. Green: Spectrochim. Acta 26A, 1913 (1970).
26. J.H.S. Green: Spectrochim. Acta 26A, 1523 (1970).
27. S. Saglam, T.R. Sertbakan, E. Kasap, and Z. Kantarci: J. Mol. Struct. 482-483, 69 (1999).
28. J.H.S. Green: Spectrochim. Acta. 26A, 1503 (1970).
29. T.R. Sertbakan, E. Kasap, and Z. Kantarci: J. Mol. Struct. 482-483, 75 (1999).
30. J.R. Schever and J.C. Evans: Spectrochim. Acta 19, 1739 (1963).
31. E.R. Lippincott and E.J. O'Reilly: J. Chem. Phys. 23, 238 (1955).
32. E. Kasap and Z. Kantarci: J. Incl. Phenom. 23, 1 (1995).
33. N. Ekici, Z. Kantarci, and S. Akyüz: J. Incl. Phenom. 10, 9 (1991).
34. E. Kasap and Z. Kantarci: J. Incl. Phenom. 20, 33 (1995).
35. Z. Kantarci and C. Bayrak: J. Incl. Phenom. 30, 59 (1998).
36. S. Bayari, Z. Kantarci, and S. Akyüz: J. Incl. Phenom. 17, 291 (1998).
37. E. Ruiz, J.J. Novoa, and S. Alvarez: J. Phys. Chem. 99, 2296 (1995).

[^0]:    * Author for correspondence.

[^1]:    Abbr.: $\mathrm{v}=$ very, $\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak, $\mathrm{sh}=$ shoulder, $\mathrm{no}=$ not observed.

